Statistical thermodynamics of membrane bending mediated protein-protein attraction

نویسندگان

  • Tom Chou
  • Ken S. Kim
  • George Oster
چکیده

Integral membrane proteins deform the surrounding bilayer creating long-ranged forces that influence distant proteins. These forces can be attractive or repulsive, depending on the proteins’ shape, height, contact angle with the bilayer, as well as the local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. In contrast to direct short-ranged interactions such as van der Waal’s, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce attractions between two proteins at distances of up to ten times their typical radii. For flat membranes, bending rigidities of ∼ 30kBT , and moderate ellipticities, we find thermally averaged attractive interactions of order ∼ 2kBT . These interactions may play an important role in the intermediate stages of protein aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical thermodynamics of membrane bending-mediated protein-protein attractions.

Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal's, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvat...

متن کامل

Irreversible thermodynamics of curved lipid membranes.

The theory of irreversible thermodynamics for arbitrarily curved lipid membranes is presented here. The coupling between elastic bending and irreversible processes such as intramembrane lipid flow, intramembrane phase transitions, and protein binding and diffusion is studied. The forms of the entropy production for the irreversible processes are obtained, and the corresponding thermodynamic for...

متن کامل

Protein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique

Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was...

متن کامل

Protein attraction in membranes induced by lipid fluctuations.

The nonspecific lipid-mediated attraction between two proteins embedded in a bilayer membrane have been investigated for a model system using Monte Carlo simulations. We found two types of attraction with different regimes. A depletion-induced attraction in the range r < sigmaL, where sigmaL is the diameter of a lipid and r is the distance between the surfaces of the two proteins, and a fluctua...

متن کامل

Fouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance

A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000